Deep graph convolutional reinforcement learning for financial portfolio management – DeepPocket

نویسندگان

چکیده

Portfolio management aims at maximizing the return on investment while minimizing risk by continuously reallocating assets forming portfolio. These are not independent but correlated during a short time period. A graph convolutional reinforcement learning framework called DeepPocket is proposed whose objective to exploit time-varying interrelations between financial instruments. represented nodes correspond instruments edges pair-wise correlation function in assets. consists of restricted, stacked autoencoder for feature extraction, network collect underlying local information shared among instruments, and an actor-critic agent. The structure contains two networks which actor learns enforces policy is, turn, evaluated critic order determine best course action constantly various portfolio optimize expected investment. agent initially trained offline with online stochastic batching historical data. As new data become available, it passive concept drift approach handle unexpected changes their distributions. against five real-life datasets over three distinct periods, including Covid-19 crisis, clearly outperformed market indexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM...

متن کامل

Independent Factor Reinforcement Learning for Portfolio Management

In this paper we propose to do portfolio management using reinforcement learning (RL) and independent factor model. Factors in independent factor model are mutually independent and exhibit better predictability. RL is applied to each factor to capture temporal dependence and provide investment suggestion on factor. Optimal weights on factors are found by portfolio optimization method subject to...

متن کامل

Deep Reinforcement Learning with Regularized Convolutional Neural Fitted Q Iteration

We review the deep reinforcement learning setting, in which an agent receiving high-dimensional input from an environment learns a control policy without supervision using multilayer neural networks. We then extend the Neural Fitted Q Iteration value-based reinforcement learning algorithm (Riedmiller et al) by introducing a novel variation which we call Regularized Convolutional Neural Fitted Q...

متن کامل

Financial APT-Based Gaussian TFA Learning for Adaptive Portfolio Management

Adaptive portfolio management has been studied in the literature of neural nets and machine learning. The recently developed Temporal Factor Analysis (TFA) model mainly targeted for further study of the Arbitrage Pricing Theory (APT) is found to have potential applications in portfolio management. In this paper, we aim to illustrate the superiority of APT-based portfolio management over return-...

متن کامل

Strategic Dialogue Management via Deep Reinforcement Learning

Artificially intelligent agents equipped with strategic skills that can negotiate during their interactions with other natural or artificial agents are still underdeveloped. This paper describes a successful application of Deep Reinforcement Learning (DRL) for training intelligent agents with strategic conversational skills, in a situated dialogue setting. Previous studies have modelled the beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2021

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2021.115127